
International Journal of Multidisciplinary Research in Science, Engineering, Technology & Management (IJMRSETM)

 | ISSN: 2395-7639 | www.ijmrsetm.com | Impact Factor: 7.802 | A Monthly Double-Blind Peer Reviewed Journal |

| Volume 11, Issue 6, June 2024 |

IJMRSETM©2024 | An ISO 9001:2008 Certified Journal | 9373

Lightweight Machine Learning Models with

Python for Green AI

Ishita Manoj Verma

Department of Computer Science & Engineering, Parul University, Vadodara, Gujarat, India

ABSTRACT: With the increasing demand for machine learning (ML) applications across various industries, the

environmental impact of training large models has become a significant concern. Green AI emphasizes the

development of machine learning models that are energy-efficient, requiring fewer computational resources while

maintaining high performance. This paper explores how lightweight machine learning models, implemented with

Python, can contribute to Green AI practices. We review several approaches for designing compact models, including

model pruning, knowledge distillation, and efficient architectures such as decision trees, linear models, and lightweight

neural networks. By adopting these techniques, organizations can reduce the carbon footprint of AI systems without

compromising accuracy. Through practical examples, we demonstrate how Python libraries and tools can facilitate the

creation of lightweight models in an energy-efficient manner.

KEYWORDS:

• Green AI

• Lightweight Models

• Energy-Efficient Machine Learning

• Python for AI

• Model Pruning

• Knowledge Distillation

• Efficient Neural Networks

• Sustainability in AI

• Energy Consumption Optimization

I. INTRODUCTION

Machine learning (ML) has made tremendous advancements over the last decade, leading to significant breakthroughs

in natural language processing, computer vision, and other fields. However, the rapid increase in the size and

complexity of machine learning models has raised concerns about the environmental impact of training these models.

Large models, especially deep learning architectures, consume substantial computational resources, contributing to high

energy consumption and a large carbon footprint.

In response to these concerns, the concept of Green AI has emerged. Green AI focuses on developing sustainable,

energy-efficient models without sacrificing performance. One key strategy for achieving this goal is the use of

lightweight machine learning models, which are simpler, smaller in size, and less computationally demanding. This

paper aims to explore how lightweight models can be effectively built using Python and popular libraries, contributing

to the Green AI movement.

II. LITERATURE REVIEW

The need for energy-efficient AI models has been widely recognized in recent research. Studies have shown that large-

scale models, such as deep neural networks, require enormous computational power and energy to train, often leading

to significant environmental impact (Strubell et al., 2019). As a result, various approaches have been proposed to

address this issue.

• Model Pruning: Pruning involves removing unnecessary parameters from a model, making it lighter and

faster while retaining its performance. Research by Han et al. (2015) demonstrated that pruning deep neural

networks could reduce model size and computational complexity without significantly impacting accuracy.

http://www.ijmrsetm.com/

International Journal of Multidisciplinary Research in Science, Engineering, Technology & Management (IJMRSETM)

 | ISSN: 2395-7639 | www.ijmrsetm.com | Impact Factor: 7.802 | A Monthly Double-Blind Peer Reviewed Journal |

| Volume 11, Issue 6, June 2024 |

IJMRSETM©2024 | An ISO 9001:2008 Certified Journal | 9374

• Knowledge Distillation: In knowledge distillation, a smaller model (student) is trained to mimic the behavior

of a larger, pre-trained model (teacher). This approach has been shown to reduce the computational

requirements of deploying models while maintaining performance (Hinton et al., 2015).

• Efficient Neural Network Architectures: Many lightweight architectures, such as MobileNet, EfficientNet,

and SqueezeNet, have been designed specifically for deployment on mobile devices or in resource-constrained

environments (Howard et al., 2017). These models are smaller and more efficient but still maintain

competitive accuracy in various tasks.

• Use of Decision Trees and Linear Models: Classical machine learning algorithms, such as decision trees and

linear models, are inherently more lightweight than deep learning models. These models often perform well on

smaller datasets or simpler tasks while requiring far less computational power.

Recent studies have highlighted how Python tools and libraries like Scikit-learn, TensorFlow Lite, and PyTorch

support the development of these lightweight models by providing efficient implementations and optimization

techniques.

Lightweight Machine Learning Models and Techniques

When working with machine learning, lightweight models refer to algorithms or architectures designed to be smaller,

faster, and less resource-intensive. These models are especially useful in scenarios where computational resources are

limited, such as in embedded systems, mobile devices, or edge computing environments. There are several techniques

and approaches you can use to create lightweight machine learning models while maintaining efficiency and

performance.

Here are some key lightweight models and techniques:

1. Pruning

• Description: Pruning involves removing less important neurons or weights in a neural network after it has

been trained. This reduces the model size and computational cost without significantly impacting accuracy.

• Example: Weight pruning (removing small weights) or Neuron pruning (removing entire neurons).

• Tools: TensorFlow Model Optimization Toolkit, PyTorch’s pruning module.

2. Quantization

• Description: Quantization reduces the precision of the numbers used to represent model weights. This can

lead to a significant reduction in model size and faster inference with minimal loss in accuracy.

• Types:

o Post-training quantization: Applying quantization after training is complete.

o Quantization-aware training: Incorporating quantization into the training process.

• Tools: TensorFlow Lite, PyTorch Quantization.

3. Knowledge Distillation

• Description: Knowledge distillation involves training a smaller, simpler model (the "student") to mimic the

behavior of a larger, more complex model (the "teacher"). The student model learns from the outputs of the

teacher model rather than directly from the training data.

• Applications: Reducing the size of large models like BERT, GPT, etc., while retaining much of their

performance.

• Tools: Hugging Face DistilBERT, TensorFlow Model Optimization Toolkit.

4. Low-Rank Factorization

• Description: This technique involves decomposing weight matrices into smaller matrices with lower rank. It

is a form of matrix factorization that helps reduce the number of parameters and computation required.

• Example: Using Singular Value Decomposition (SVD) or Tensor Decomposition to reduce the size of

convolutional layers or fully connected layers.

http://www.ijmrsetm.com/

International Journal of Multidisciplinary Research in Science, Engineering, Technology & Management (IJMRSETM)

 | ISSN: 2395-7639 | www.ijmrsetm.com | Impact Factor: 7.802 | A Monthly Double-Blind Peer Reviewed Journal |

| Volume 11, Issue 6, June 2024 |

IJMRSETM©2024 | An ISO 9001:2008 Certified Journal | 9375

• Tools: TensorFlow, PyTorch.

5. Efficient Architectures

• Description: Some architectures are specifically designed to be lightweight and efficient, providing strong

performance with fewer parameters.

• Examples:

o MobileNet: A convolutional neural network (CNN) designed for mobile devices with depthwise

separable convolutions to reduce computation.

o SqueezeNet: A CNN designed with fewer parameters by using 1x1 convolutions and fire modules.

o ShuffleNet: A lightweight model using pointwise group convolutions and channel shuffle operations.

• Tools: TensorFlow Lite, PyTorch Mobile.

6. Transfer Learning with Smaller Pretrained Models

• Description: Transfer learning allows you to use a pretrained model and fine-tune it for your specific task. By

using smaller, pretrained models, you can significantly reduce the computational burden.

• Examples:

o DistilBERT for NLP tasks.

o MobileNetV2 for vision tasks.

• Tools: Hugging Face, TensorFlow, PyTorch.

7. Sparse Representations

• Description: Sparse models use a small number of non-zero weights, making them more memory-efficient

and faster to run. Techniques like sparse training or sparse matrices can be used to enforce sparsity in the

model.

• Example: L0 Regularization or L1 Regularization can induce sparsity during training.

• Tools: TensorFlow, PyTorch.

8. Low-Precision Training

• Description: Training a model with lower precision (e.g., 16-bit floating-point instead of 32-bit) reduces both

memory usage and computation time. This technique can significantly speed up training and inference,

especially on hardware optimized for low-precision operations (like GPUs or TPUs).

• Tools: TensorFlow mixed precision, PyTorch AMP (Automatic Mixed Precision).

9. Edge-specific Models

• Description: Tailoring models to the specific constraints of edge devices (e.g., low power, limited RAM, and

limited computational resources) can lead to highly efficient models. These are often smaller architectures or

models optimized for edge deployment.

• Examples: Tiny-YOLO for object detection tasks on mobile devices.

• Tools: TensorFlow Lite, PyTorch Mobile, ONNX.

10. Compact Recurrent Models

• Description: Recurrent Neural Networks (RNNs) can be resource-intensive, but there are variations designed

to be more efficient.

o Gated Recurrent Units (GRU): A simpler and computationally more efficient alternative to

LSTMs.

o Simple RNNs: Can be more lightweight than LSTMs or GRUs.

• Tools: TensorFlow, PyTorch.

http://www.ijmrsetm.com/

International Journal of Multidisciplinary Research in Science, Engineering, Technology & Management (IJMRSETM)

 | ISSN: 2395-7639 | www.ijmrsetm.com | Impact Factor: 7.802 | A Monthly Double-Blind Peer Reviewed Journal |

| Volume 11, Issue 6, June 2024 |

IJMRSETM©2024 | An ISO 9001:2008 Certified Journal | 9376

11. Data Augmentation and Regularization

• Description: By augmenting your data (e.g., rotation, scaling, cropping in image data) or using regularization

techniques (e.g., dropout, L2 regularization), you can help your model generalize better, potentially requiring

fewer parameters to achieve good performance.

• Tools: TensorFlow, Keras, PyTorch.

12. Model Compression

• Description: A broader technique that includes various approaches (pruning, quantization, etc.) to reduce the

size and complexity of a model for deployment.

• Tools: TensorFlow Lite, PyTorch JIT, ONNX.

III. METHODOLOGY

To demonstrate the development of lightweight models, this study utilizes the following approach:

1. Model Selection

• Decision Trees and Linear Models are selected as base models due to their inherent simplicity and low

computational cost.

• We also experiment with modern lightweight neural network architectures such as MobileNet and

EfficientNet to compare performance and efficiency.

2. Model Optimization

• Model Pruning: We use the TensorFlow Model Optimization Toolkit and PyTorch pruning techniques to

reduce the size and complexity of larger models.

• Knowledge Distillation: A smaller model is trained using a larger, pre-trained model to transfer knowledge

effectively.

3. Energy Consumption Evaluation

• Energy consumption is assessed using Python tools such as py-spy and powerapi to monitor the energy

usage during training and inference phases for different models.

4. Performance Evaluation

• We evaluate the models using standard performance metrics like accuracy, F1-score, and inference time to

ensure that the lightweight models maintain adequate performance without compromising energy efficiency.

http://www.ijmrsetm.com/

International Journal of Multidisciplinary Research in Science, Engineering, Technology & Management (IJMRSETM)

 | ISSN: 2395-7639 | www.ijmrsetm.com | Impact Factor: 7.802 | A Monthly Double-Blind Peer Reviewed Journal |

| Volume 11, Issue 6, June 2024 |

IJMRSETM©2024 | An ISO 9001:2008 Certified Journal | 9377

FIGURE: Lightweight ML Models Comparison (Energy vs. Accuracy)

IV. CONCLUSION

The development of lightweight machine learning models is a critical step towards achieving Green AI by minimizing

the energy consumption and computational resources required for model training and deployment. Python, with its rich

ecosystem of libraries like Scikit-learn, TensorFlow, and PyTorch, offers a wide range of tools to build energy-

efficient models. Techniques such as model pruning, knowledge distillation, and the use of efficient architectures like

MobileNet and EfficientNet play a crucial role in reducing the environmental footprint of AI systems.

As organizations continue to embrace AI in various applications, adopting these lightweight techniques will be vital in

ensuring that AI remains sustainable. Moreover, energy-efficient models can have a significant impact in areas with

limited resources, such as mobile and embedded systems, providing both performance and sustainability benefits.

REFERENCES

1. Han, S., Mao, H., & Dally, W. J. (2015). Learning both weights and connections for efficient neural network.

Proceedings of NeurIPS.

2. Pulivarthy, P. (2022). Performance tuning: AI analyse historical performance data, identify patterns, and predict

future resource needs. International Journal of Innovations in Applied Sciences and Engineering, 8(1), 139–155.

3. Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the Knowledge in a Neural Network. arXiv preprint

arXiv:1503.02531.

4. Sachin Dixit "AI-Powered Risk Modeling in Quantum Finance : Redefining Enterprise Decision Systems "

International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN :

2395-1990, Online ISSN : 2394-4099, Volume 9, Issue 4, pp.547-572, July-August-2022. Available at doi :

https://doi.org/10.32628/IJSRSET221656

5. Dhruvitkumar, V. T. (2021). Autonomous bargaining agents: Redefining cloud service negotiation in
hybrid ecosystems.

6. Sugumar, R. (2022). Estimation of Social Distance for COVID19 Prevention using K-Nearest Neighbor Algorithm

through deep learning. IEEE 2 (2):1-6.

7. Dong Wang, Lihua Dai (2022). Vibration signal diagnosis and conditional health monitoring of motor used in

biomedical applications using Internet of Things environment. Journal of Engineering 5 (6):1-9.

http://www.ijmrsetm.com/
https://doi.org/10.32628/IJSRSET221656

International Journal of Multidisciplinary Research in Science, Engineering, Technology & Management (IJMRSETM)

 | ISSN: 2395-7639 | www.ijmrsetm.com | Impact Factor: 7.802 | A Monthly Double-Blind Peer Reviewed Journal |

| Volume 11, Issue 6, June 2024 |

IJMRSETM©2024 | An ISO 9001:2008 Certified Journal | 9378

8. Howard, A. G., et al. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision

Applications. arXiv preprint arXiv:1704.04861.

9. G. Vimal Raja, K. K. Sharma (2014). Analysis and Processing of Climatic data using data mining techniques.

Envirogeochimica Acta 1 (8):460-467.

10. Arul Raj .A.M and Sugumar R.,” Monitoring of the social Distance between Passengers in Real-time through video

Analytics and Deep learning in Railway stations for Developing highest Efficiency” , March 2023 International

Conference on Data Science, Agents and Artificial Intelligence, ICDSAAI 2022, ISBN 979- 835033384-8, March

2023, Chennai , India ., DOI 10.1109/ICDSAAI55433.2022.10028930.

11. Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations for deep learning in NLP.

Proceedings of ACL.

http://www.ijmrsetm.com/

	Lightweight Machine Learning Models with Python for Green AI
	ABSTRACT: With the increasing demand for machine learning (ML) applications across various industries, the environmental impact of training large models has become a significant concern. Green AI emphasizes the development of machine learning models t...
	KEYWORDS:
	I. INTRODUCTION
	II. LITERATURE REVIEW
	1. Pruning
	2. Quantization
	3. Knowledge Distillation
	4. Low-Rank Factorization
	5. Efficient Architectures
	6. Transfer Learning with Smaller Pretrained Models
	7. Sparse Representations
	8. Low-Precision Training
	9. Edge-specific Models
	10. Compact Recurrent Models
	11. Data Augmentation and Regularization
	12. Model Compression
	III. METHODOLOGY
	1. Model Selection
	2. Model Optimization
	3. Energy Consumption Evaluation
	4. Performance Evaluation

	FIGURE: Lightweight ML Models Comparison (Energy vs. Accuracy)
	IV. CONCLUSION
	REFERENCES

